The Tutte Polynomial as a Growth Function
نویسنده
چکیده
The ‘dollar game’ represents a kind of diffusion process on a graph. Under the rules of the game some configurations are both stable and recurrent, and these are known as critical configurations. The set of critical configurations can be given the structure of an abelian group, and it turns out that the order of the group is the tree-number of the graph. Each critical configuration can be assigned a positive weight, and the generating function that enumerates critical configurations according to weight is a partial evaluation of the Tutte polynomial of the graph. It is shown that the weight enumerator can also be interpreted as a growth function, which leads to the conclusion that the (partial) Tutte polynomial itself is a growth function.
منابع مشابه
Tutte polynomials of wheels via generating functions
We find an explicit expression of the Tutte polynomial of an $n$-fan. We also find a formula of the Tutte polynomial of an $n$-wheel in terms of the Tutte polynomial of $n$-fans. Finally, we give an alternative expression of the Tutte polynomial of an $n$-wheel and then prove the explicit formula for the Tutte polynomial of an $n$-wheel.
متن کاملOn the tutte polynomial of benzenoid chains
The Tutte polynomial of a graph G, T(G, x,y) is a polynomial in two variables defined for every undirected graph contains information about how the graph is connected. In this paper a simple formula for computing Tutte polynomial of a benzenoid chain is presented.
متن کاملFlow Polynomial of some Dendrimers
Suppose G is an nvertex and medge simple graph with edge set E(G). An integervalued function f: E(G) → Z is called a flow. Tutte was introduced the flow polynomial F(G, λ) as a polynomial in an indeterminate λ with integer coefficients by F(G,λ) In this paper the Flow polynomial of some dendrimers are computed.
متن کاملA characterization of the Tutte polynomial via combinatorial embeddings
We give a new characterization of the Tutte polynomial of graphs. Our characterization is formally close (but inequivalent) to the original definition given by Tutte as the generating function of spanning trees counted according to activities. Tutte’s notion of activity requires a choice of a linear order on the edge set (though the generating function of the activities is, in fact, independent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999